Тел.: 8-926-290-27-30
ICQ: 92473347
По какому принципу вы выбираете себе геодезическую фирму?
Всего: 4726 голосов

История измерений формы и размеров Земли

Не все знают, что о форме и размерах Земли люди имели достаточно реальные представления еще до начала нашей эры. Так, древнегреческий философ Аристотель (384  322 до н. э.) полагал, что Земля имеет шарообразную форму, а в качестве доказательства приводил округлость формы земной тени во время лунных затмений, поскольку только шар при освещении с любой стороны всегда дает круглую тень.

Эратосфен, живший в Александрии (город на севере Египта, основан Александром Македонским в 332—331 гг. до н. э.) выбрал, около 230 г. до Р. X., для своего градусного измерения дугу александрийского меридиана, предположив, что на нем же лежит Ассуан (Ассуан, 24° 8 6" ш. и 30° 34 39" д., последний из городов, встречаемых в Египте со стороны Нубии) . Светилом для измерения высот служило Солнце. Эратосфен узнал, что в Ассуане, во время летнего солнцестояния, в полдень, можно видеть изображение Солнца в глубоких колодцах, т. е., что Солнце достигает там в это время зенита, и высота его равна стало быть 90°. В Александрии, по наблюдениям тени гномона (гномон древнейший астрономический инструмент, состоящий из вертикального стержня на горизонтальной площадке. По длине и направлению тени стержня можно определять высоту и азимут Солнца) , в то же самое время, Солнце оказывалось удаленным от зенита на одну пятидесятую часть окружности или на 7°12’, так что для разности широт этих городов получилась непосредственно величина 7°12’. С другой стороны, из рассказов купцов, сопровождавших свои караваны, Эратосфен узнал, что путь между Ассуаном и Александрией лежит почти в направлении полуденной тени, т. е. по меридиану, и, судя по времени, необходимому на весь переход, и по скорости движения караванов, расстояние между названными городами равно 5000 стадиям (800 км). Если 7°12 соответствуют 5000 стадиям (800 км), то длина окружности или 360° выходит равна 250 000 стадий (40 000 км), а радиус Земли = 39 789 стадий (6 366 км).

Рис.

По новейшим определениям разность широт Александрии и Ассуана равна 7°7’, и оба города не лежат на одном меридиане, (Ассуан почти на 3° восточнее Александрии), там не менее астрономическая часть работы Эратосфена для своего времени была почти безупречна. К несчастью истинная длина египетской стадии была не известна. Разные ученые исследователи определяют ее от 158 до 185 метров, и потому о точности этого первого градусного измерения в настоящее время нельзя составить себе верного представления. Во всяком случае, как упомянуто выше, основание способа Эратосфена совершенно верно и применяется до сих пор.

 В связи с этим непонятно, как полтора тысячелетия (!) спустя Христофор Колумб настолько ошибся с оценкой размеров Земли, что принял Американский континент за часть Индии!

Следующая попытка определить размеры Земли была сделана Посидонием (Посидоний из Апамеи в Сирии, философ–стоик, математик и астроном, 135—50 до Р. Хр. В философии представитель синкретизма; как астроном известен своей попыткой (второй, первая принадлежала Эратосфену) определить размеры земного шара) . Крайними точками дуги меридиана избраны были Александрия и остров Родос. Угловое расстояние получено из наблюдений звезды Канопуса (Канопус ( Argus), звезда первой величины в созвездии «Корабль Арго»; видна в нашем полушарии южнее 37,5° сев. широты) , которая в Александрии поднимается до высоты 7½°, а на Родосе едва показывается на горизонте, так что высота ее там почти равна 0°. Линейное расстояние оценено по времени перехода судов и принято равным 5 000 стадиям (800 км). Отсюда окружность Земли оказывается 240 000 стадий (38 400 км). Результат Посидония признается менее удовлетворительным, чем вывод Эратосфена, потому что на высоты светил близ горизонта весьма значительно влияет преломление лучей в атмосфере, тогда еще неизвестное, да и оценка линейного расстояния по морю не могла быть благонадежной. Ныне известно, что разность широт Александрии и Родоса всего 5°, и они далеко не лежать на одном меридиане.

Замечательно, что в сочинениях Птоломея (87  165), известного александрийского астронома, не упоминается об определении размеров Земли, хотя в его «Географии» видимо подразумевается ее шарообразность и длина одного градуса принимается равною 500 стадиям (80 км), что дает для окружности всей Земли 180 000 стадий (28 800 км)  число значительно меньшее, чем результаты Эратосфена и Посидония.

После уничтожения александрийской библиотеки, в смутные годы первых веков нашей эры, всякие научные работы прервались, и новая попытка градусного измерения сделана лишь в 827 году арабами, которые, достигнув политического могущества, в лице своих калифов с любовью покровительствовали развитию точных наук. Калиф Альмамум, сын Гарун аль–Рашида, приказал своим астрономам Калид бен–Абдулмелику и Али–бен–Изп измерить дугу меридиана в равнине Синджар, лежащей к западу от реки Тигра и нынешнего города Мосула. В избранной исходной точке, около 35° северной широты, арабские ученые разделились на две парии и направились одна на север, другая па юг, производя измерения арабскими локтями. Эти измерения продолжались до тех пор, пока каждая пария не прошла по меридиану 1°, что определялось имевшимися тогда угломерными инструментами по высотам звезд. Одна пария получила для градуса меридиана величину 56, а другая 56⅔ мили по 4 000 локтей. Второе число было признано точнее первого и принято за величину градуса меридиана.

Покуда длина арабского локтя была неизвестна, нельзя было составить себе понятие о точности измерения арабов; известно было лишь, что арабский локоть имел 27 дюймов, а каждый дюйм равнялся шести положенным в ряд ячменным зернам. Но недавно, на нильском острове Рода, под Каиром, на колонне из тесанного камня, найдены черты, означающие арабские локти, подразделенные на дюймы. Оказалось, что арабский локоть равен приблизительно 49⅓ сантиметрам, так что длина арабской мили выходит около 1973 метров или 926.3 саженей. От перемножения этого числа на 56⅔ получается для длины градуса, под широтой 35°, 104.8 версты (111.088 км), что весьма близко к современным определениям.

 В средние века сведенья греков и арабов о шарообразности Земли и ее величине были забыты, и только в начале XVI века, после эпохи великих морских путешествий, произведена новая попытка определения размеров Земли. Именно, французский ученый и врач короля Франциска II–го, Фернель (1497  1558), в 1528 году, измерил дугу меридиана вблизи Парижа. Угловые высоты Солнца он определял при помощи треугольника с диоптрами, одна сторона которого была разделена на части, соответствующая минутам дуги, линейное же расстояние Фернель получил счетом оборотов колеса своей повозки. Длина градуса меридиана под широтою Парижа получилась равною 56 746 тоазам или около 51838 саженей (110.41 км).

Итак, в первом приближении форма и размеры нашей планеты известны очень давно. А можно ли, находясь на ее поверхности, доказать, что она вращается? Оказывается, можно, и даже несколькими способами.

Вращение Земли

 В 1672 году француз Рише случайно заметил, что у экватора маятниковые часы идут медленнее, чем в Париже. Объяснение этому факту нашел английский физик, астроном и математик Исаак Ньютон (1643  1727). Вращение Земли должно приводить к появлению центробежной силы, направленной перпендикулярно оси вращения (не поверхности!) в сторону, противоположную этой оси. То есть в средних широтах центробежная сила меньше по величине (поскольку расстояние до оси вращения меньше) и направлена под углом к горизонту, а на экваторе она достигает наибольшей величины, что и приводит к уменьшению силы тяжести g на экваторе и, вследствии этого, замедлению (увеличению периода Т) колебаний маятника длиной l, поскольку T = 2p(l/g)1/2.

 В 1851 году французский физик Жан Фуко (1819  1868) продемонстрировал на опыте, что плоскость качания маятника со временем поворачивается, что объясняется суточным вращением Земли вокруг своей оси. Позже этот опыт повторяли в разных городах, в том числе и в Ленинграде, в Исаакиевском соборе. Очевидно, что эффект поворота плоскости качания маятника зависит от широты места проведения опыта, наиболее выражен на земных полюсах и отсутствует на экваторе. Тот же Жан Фуко изобрел гироскоп, и его свойство сохранять направление оси вращения также доказывало суточное вращение Земли (ось гироскопа при любом положении за сутки опишет окружность вокруг проекции на небо земной оси, а почему будет объяснено в главе про экваториальную систему координат).

Другим свидетельством земного вращения является действие поворотного, или кориолисова ускорения на движущиеся воздушные и водные массы. Этот эффект проявляется как отклонение от меридианального направления ветров и океанских течений, а также в подмывании одного из берегов реками, текущими в направлении север юг. Суть явления очень проста. Если, например, река течет с юга на север, то ее воды по инерции стремятся сохранить ту линейную скорость вращения (перпендикулярную направлению течения), которую они имели южнее, т. е. отклониться к востоку (Земля вращается с запада на восток). А в результате будет размываться восточный берег.

И еще одно доказательство вращения Земли отклонение падающих тела от направления отвесной линии. Объяснение точно такое же: линейная скорость вращения тем больше, чем выше над поверхностью тело, а при падении эта скорость сохраняется, и за время полета точка, прямо над которой сначала находилось падающее тело, сместится на восток на меньшее расстояние, чем само тело в момент приземления, т. е. тело упадет восточнее.

Более точная форма Земли

Зная период вращения (24 часа) и радиус Земли легко вычислить линейную скорость вращения на экваторе: v0 = w R, где w = 2p/86400 об/сек, и при R = 6378 км получается v0 ~ 460 м/c (на широте j эта скорость составит v = v0*cos(j)). На тело массой m будет действовать центробежная сила Fц = m*w2*R и сила тяжести по закону всемирного тяготения Fg= G*M*m/R2, где М  масса Земли, ее радиус. Отношение Fц к Fg для шарообразной Земли составит:

Fц / Fg= w2*R3/(G*M) (2) 

Если подставить сюда реальные значения М и R, то получим Fц / Fg= 3.45×10—3, то есть на экваторе любое тело должно весить примерно на 0.3 % меньше, чем на полюсах. На самом деле это различие не превышает 0.55%.

Теперь самое время вспомнить, что форма Земли все–таки отличается от шара. Еще Ньютон теоретически доказал, что если пробурить до центра Земли два сообщающихся канала один от Северного полюса, другой от экватора, и заполнить их водой, то вода установилась бы на разных уровнях. В полярном колодце на воду действует только сила тяготения, а в экваториальном еще и центробежная сила. Для того, чтобы оба столба воды оказывали на центр Земли одинаковое давление (т. е. имели равный вес), уровень воды в экваториальном колодце должен быть выше. По подсчетам Ньютона, эта разница должна составлять 1/230 долю от среднего радиуса Земли.

Такой расчет не так уж и сложен. Нужно прировнять вес каждого элементарного объема вещества на полюсе и на экваторе. То есть для равновесия на любом расстоянии r от центра Земли будет справедливо соотношение:

m*gп(r)=m*gэ(r)  m*w2*r (3) 

Зависимость ускорения свободного падения от радиуса в полярном и экваториальном колодцах одинакова: gп(r) = gэ(r) = GM/r2, где М  масса, заключенная внутри радиуса r : M(r) = r*4*p*r3/3, где r  плотность вещества, заполняющего колодцы. Если все это подставить в уравнение равновесия (3), сократить на m и проинтегрировать по всему радису Земли (левую часть от 0 до полярного радиуса Rп, правую от 0 до экваториального радиуса Rэ), то в результате получится соотношение:

Rп = Rэ*(1—3*w2/(4*p*r*G))1/2 (4) 

Подставив в (4) среднюю плотность Земли 5.52 г/см3 (она все–таки состоит в основном не из воды) и экваториальный радиус Rэ=6378140 м, получим Rп ~ 6356130 м, то есть полярный радиус должен быть меньше экваториального примерно на 22 км, а отношение f = (Rэ–Rп)/Rэ= 1/289.8. Величина f называется сжатием Земли и в действительности равна 1/298.257. Таким образом, вышеприведенный теоретический расчет хорошо согласуется с реальной формой земной поверхности. Даже несмотря на то, что мы не учитывали зависимость плотности от радиуса, а взяли усредненную плотность.

Таким образом, еще Ньютон показал, что Земля должна быть сплюснута у полюсов. То же самое следовало и из наблюдений быстровращающихся планет–гигантов Юпитера и Сатурна. Однако проверить это на практике в отношении Земли было совсем не просто. Только в следующем веке было организовано несколько экспедиций специально для того, чтобы измерить длины двух дуг меридиана, по 1° каждая, одна как можно ближе к экватору, другая к полюсу. В конце концов выяснилось, что дуга в 1° в экваториальных широтах (измерения 1735  1743 гг. в Перу) действительно короче, чем в полярных (1736—1737 гг. в Лапландии), что и является прямым доказательством сжатия Земли к полюсам. Здесь следует пояснить, что измерения дают не радиус Земли (т. е. расстояние от поверхности до центра), а радиус кривизны поверхности, т. е. радиус окружности, которая на данном участке ближе всего соответствует дуге меридиана. Поскольку меридианы у полюсов изогнуты слабее, чем у экватора, то в первом случае и радиусы их кривизны больше.

Кстати, результатом этих экспедиций стало также принятие новой единицы длины, которую определили как 1/40 000 000 часть от полной длины Парижского меридиана. Эта единица получила название метр, и поэтому неудивительно, что длина земного экватора так близка к круглому числу 40 000 км. Принятие новой единицы длины стало началом введения метрической системы мер и весов, а сам метр был выполнен в виде массивного стержня из сплава платины с иридием, переданного на вечное хранение в парижский архив. Последующие исследования показали, что принятая длина метра немного занижена по отношению к сорокамиллионной доли от окружности Земли, но менять стандарт сочли неразумным, так как каждое новое измерение вносило бы новые поправки, да и разные меридианы несколько отличаются по длине, так как фигура Земли не совпадает с эллипсоидом вращения. В настоящее время величина метра закреплена более точно и надежно, а до 9–го знака ее можно выразить как 1650763.73 длины волны излучения в вакууме оранжевой спектральной линии 86Kr.

Раз уж речь зашла о единицах длины, то стоит рассказать еще об одной. Поскольку полная длина меридиана принята за 40 000 км, то 1° от этой длины составит в среднем 1/360 его часть, что равно 111.111 км, а 1 1.852 км. Последняя единица называется морской милей. Ее удобство для навигации, особенно в прошлые века, определяется тем, что широту местности вычисляют по высоте светил (например, Солнца в момент его наибольшей высоты) над горизонтом, а изменение высоты светила на 1 (за счет движения на север или на юг) как раз и соответствует перемещению наблюдателя на 1 морскую милю вдоль меридиана.

Осталось только упомянуть, что при еще более точном рассмотрении форма Земли отличается от эллипсоида вращения, и в масштабах меньше километра имеет весьма сложную форму поверхности, которая получила названия геоида. Между прочим, под поверхностью Земли в данном случае подразумевается не реальный рельеф поверхности со всеми горами, холмами и низинами, а усредненный уровень воды в океанах, который с помощью нивелирования удается продолжить и под сушей (высота над уровнем моря). Эта поверхность является уровневой, т. е. она всюду перпендикулярна к направлению силы тяжести и отличается от эллипсоида вращения не больше, чем на несколько сотен метров, а если за фигуру Земли принять трехосный эллипсоид (экватор можно представить как эллипс с разностью полуосей около 200 м), то отличие геоида от него не превысит 100 м. Это отличие вызвано неравномерным распределением масс как на поверхности Земли (континенты и океаны), так и внутри нее вследствии их влияния на величину и направление силы тяжести. Изучение фигуры геоида одна из задач геодезии и гравиметрии.

Масса Земли

Массу Земли с достаточной точностью измерил в 1797 году Генри Кавендиш. Для этого он использовал крутильные весы со свинцовыми шариками на концах. Приближая к этим шарикам с разных сторон два больших свинцовых шара и зная их массы, по углу закрутки весов Кавендиш измерил, во сколько раз сила притяжение маленького шара к большому отличается от силы притяжения Земли. В итоге масса Земли получилась 6×1021 тонн, что близко к значению, принятому в настоящее время.

Теперь снова вспомним закон всемирного тяготения. Ускорение, сообщаемое тяготение Земли любому телу на ее поверхности, называется ускорением силы тяжести. Оно направлено примерно к центру Земли и по величине приближенно равна:

g = G*M/r2 (5) 

где G  гравитационная постоянная, масса Земли, ее радиус. Если бы Земля не вращалась и имела форму шара со сферически–симметричным распределением масс внутри себя, то выражение (5) было бы точным. Однако на самом деле эти три условия не выполняются.

Направление силы тяжести для эллипсоидальной формы Земли немного отличается от направления на геометрический центр эллипсоида, совпадая с ним на экваторе и полюсах, и достигая максимальной величины отклонения (5’.7) на широтах +–45°. В то же время на экваторе величина силы притяжения из–за эллипсоидальности Земли на f/2 меньше, чем на полюсе, то есть примерно на 1/600 долю.

Кроме того, в ускорение силы тяжести входит центробежное ускорение, возникающее от суточного вращения Земли. Оно направлено перпендикулярно оси вращения, по радиусу r образованного параллелью круга и лежит в его плоскости. Центробежное ускорение равно w2*r, где w = 2*p/Т угловая скорость вращения с периодом Т, причем для Земли нужно взять продолжительность звездных суток Т = 86146 с. На экваторе центробежное ускорение максимально: w2*r = 3.39 см/с2, что составляет 1/288 долю от гравитационного ускорения силы тяжести, равного на экваторе 983.42 см/с2. На экваторе центробежная сила прямо противоположна силе притяжения и поэтому вычитается из последней, что дает полное ускорение свободного падения g = 980.03 см/с2. На полюсах центробежная сила отсутствует и не дает боковой составляющей.

 В промежуточных широтах центробежная сила пропорциональна радиусу параллели r = r*cos(ja), где r  текущее расстояние до центра Земли (радиус–вектор), а ja  геоцентрическая широта. Отличие ja от обычной географической широты j составляет j  ja = 11’.6*sin(2*j). Поэтому центробежное ускорение w2*r = w2*r*cos(ja) можно разложить на вертикальную составляющую w2*r*cos(ja)*cos(j) и горизонтальную w2*r*cos(ja)*sin(j), направленную по меридиану к экватору. Если пренебречь небольшим различием между ja и j, то горизонтальная составляющая центробежного ускорения w2*r*cos(j)*sin(j) будет максимальной на широте +–45°, достигая значения 1.7 см/с2, что в угловой мере соответствует отклонению отвеса на 5.’9 к югу. Вертикальная составляющая центробежного ускорения w2*r*cos(j) (если пренебречь различием между направлением отвесной линии и направлением на центр Земли) на экваторе даст w2*r, на широтах +–45° 0.5*w2*r и нуль на полюсах. Таким образом, на экваторе ускорение силы тяжести уменьшено на f за счет центробежной силы и на f/2 за счет уменьшения силы притяжения. В сумме эти два эффекта приводят к тому, что на экваторе ускорение силы тяжести на f/2+f = 1.5*f ~ 1/200 меньше, чем на полюсах.

Точную зависимость ускорения силы тяжести от высоты вывел в 1743 г. французский математик А. Клеро:

g = g0*(1+b*sin2(j)), b = (g0  gp)/g0 (6) 

где g0  ускорение силы тяжести на экваторе, gp  на полюсе, а коэффициент b = 2.5*q f (здесь q  отношение центробежного ускорения к ускорению силы тяжести на экваторе w2*r/g0 , сжатие Земли). В современных числовых значениях формула Клеро выглядит так:

g = 978.03*(1+0.00529*sin2(j)) (7) 

Измерение ускорения силю тяжести в разных местах позволяет определить числовое значение b, а через него сжатие Земли f, которое оказалось в хорошем согласии с измерениями дуг меридианов. Ускорение силы тяжести можно измерить несколькими способами, из них самый простой по периоду качания маятника известной длины l: 

T = 2*p*(l/g)1/2, откуда g = 4*p2*l/T2 (8) 

Измерением и изучением распределения ускорения силы тяжести по поверхности Земли занимается специальный раздел астрономии гравиметрия. Это распределение позволяет не только получить величину сжатия Земли, но и найти отклонения фигуры геоида от точного эллипсоида и, кроме того, получить важные сведения о внутреннем строении Земли.

Из величины ускорения силы тяжести легко получить массу и среднюю плотность Земли. Например, на широте 45° по формуле Клеро (7) g = 980.62 см/с2. Вертикальная составляющая центробежного ускорения на этой широте составит 0.5*w2*r = 1.7 см/с2. Отсюда ускорение силы притяжения на широте 45° получится 982.32 см/с2. Подставив эту величину и средний радиус Земли r = 6.370×108 см в фомулу Ньютона (5), получим массу Земли М = 5.98×1027 г. Среднюю плотность Земли можно вычислить, если разделить массу М на объем Земли, что даст 5.52 г/см3.

Параметры Земли

  • Экваториальный радиус а = 6378.140 км
  • Полярный радиус b = 6356.755 км
  • Средний радиус r = 6371.004 км
  • Радиус–вектор на уровне моря на широте j: r = a*(0.998 324 07 + 0.001 676 44*cos(2*j) 0.000 003 52*cos(4*j) + …)
  • Сжатие Земли fe = (a–b)/a = 0.003 352 81 = 1/298.257
  • Эксцентриситет земного меридиана e = ((a2–b2)/a2)1/2 = 0.081 820
  • Площадь поверхности 509 494 365 км2,
    • из них суша 29.2%,
    • водная поверхность 70.8%
  • Объем Земли 1.083 209×1012 км3
  • Масса Земли 5.973×1027 г = 1/(332 946 + 20) массы Солнца
  • Средняя плотность Земли 5.574 г/cм3
  • Средняя плотность земной коры 2.80 г/cм3
  • II космическая скорость у поверхности 11.2 км/с
  • Длина 1o географической долготы на широте j (111.321*cos(j)  0.094*cos(3*j)) км
  • Длина 1o географической широты на широте j (111.143  0.562*cos(2*j)) км
  • Разность астрономической j и геоцентрической j широт (в системе МАС) j = 692«.74*sin(2*j) 1».163*sin(4*j) + 0«.003*sin(6*j)
  • Угловая скорость вращения Земли 15».041/с = 0.000 072 921 об/с
  • Линейная скорость точки земной поверхности на широте j: v = 465.119*cos(j) м/с
  • Средняя скорость орбитального движения Земли 29.765 км/с ~ 100 000 км/ч
  • Наибольшая орбитальная скорость (в перигелии) 30.287 км/с
  • Наименьшая орбитальная скорость (в афелии) 29.291 км/с
  • Год звездный (период обращения вокруг Солнца относительно звезд) 365.25636 суток = 365 д 6 ч 9 мин 10 с
  • Год тропический (период обращения вокруг Солнца относительно точки весеннего равноденствия) 365.24220 суток = 365 д 5 ч 48 мин 46 с
  • Год аномалистический (период обращения вокруг Солнца относительно перигелия) 356.25964 суток = 365 д 6 ч 13 мин 53 с
  • Год драконический (период обращения вокруг Солнца относительно узлов лунной орбиты) 346.62003 суток = 346 д 14 ч 52 мин 51 с
  • Ускорение Земли к Солнцу 0.59 см/с2
  • Ускорение силы тяжести на поверхности Земли (стандартное) g0 = 980.665 см/с2
  • Ускорение силы тяжести на широте 45o (абсолютное) g45 = 980.616 см/с2
  • Ночное излучение Земли (в ясную ночь) 70—140 Дж/м2

Комментарии (всего: 3):
# Наталью (СПб) 4 мая 2010, 00:07:41
Скажите, какой литературой вы пользовались при написании этой статьи? С ув., Наталья
# Денис (Раменское) 4 мая 2010, 18:47:21
С самого начала и до раздела "Вращение земли" - В.Витковскiй "Практическая геодезiя" С.-Петербургъ. Типографiя Ю.Н. Эрлихъ, Садовая N9. 1898 г. ...соответственно текст под моей редакцией, так как старорусский язык не привычен в понимаении. Остальную часть уже не помню где брал, но вероянее всего из аналогичной литературы.
# Евгений (Минск) 7 июня 2010, 23:46:52
На информацию о том, что: &quot;Массу Земли с достаточной точностью измерил в 1797 году Генри Кавендиш. Для этого он использовал крутильные весы со свинцовыми шариками на концах. Приближая к этим шарикам с разных сторон два больших свинцовых шара и зная их массы, по углу закрутки весов Кавендиш измерил, во сколько раз СИЛА ПРИТЯЖЕНИЯ маленького шара к большому отличается от силы притяжения Земли&quot; хочу заметить следующее: Эксперимент Кавендиша, проведенный лишь только им за всю историю Планеты, совершенно не доказывает, что тела притягиваются. За всю последующую историю никаких ПРИЧИН наличия тяготения физика так и не выявила. Результат эксперимента Кавендиша будет точно таким же, если тела не притягиваются по неизвестной причине, а прижимаются внешними силами вследствие взаимоэкранирования друг друга в потоках всесторонних космических излучений. См. новую теорию (гипотезу) возникновения Вселенной на <a href="http://dovgel.com/tv.htm">http://dovgel.com/tv.htm</a>
Ваш ответ на комментарий 7 июня 2010, 23:46:52 (автор: Евгений)
Текст:
Email:
    
  
Пароль:
 
Имя:
Откуда вы:
Москва, Раменское, Васюки, …
За неделю: 111